
Amit Kapila
PostgreSQL Committer and Major Contributor

Fujitsu

Latest developments in

PostgreSQL

Agenda

● Key features and performance improvements

in PostgreSQL 17

● PostgreSQL 18 and beyond

Key features and performance improvements

in PostgreSQL 17

● PostgreSQL 18 and beyond

Agenda

4 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Storage

● Incremental Backups

● Useful for taking backups of large data

● pg_basebackup can be used to take incremental backups by specifying the –incremental option

● Specify the backup manifest to an earlier backup from the same server

● In the resulting backup only the changed blocks are copied

● To figure out which blocks needs to be copied, the server uses WAL summaries

stored in the data directory

● A GUC summarize_wal needs to be enabled to collect these WAL

summaries by a background process

● The tool pg_combinebackup is used to reconstruct a full backup from an

incremental backup and earlier backups upon which it depends

1/4

5 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Storage

● Improved the mechanism to remove dead tuples during vacuum

● Replaced the array used to store dead tuples with efficient TIDStore based on adaptive radix tree

● Since the backing radix tree makes small allocations as needed, the 1GB limit is now gone.

● Total memory used is now often smaller by an order of magnitude or more

● This makes multiple rounds of heap scanning and index cleanup an extremely rare event

● TID lookup during index cleanup is also several times faster

● Reduced the WAL volume for Vacuum by combining freezing and pruning steps such that we now

emit a single WAL record containing changes from both steps

● As a consequence of this, WAL sync and write time is reduced

● Optimize vacuuming of relations with no indexes

● Items can be marked LP_UNUSED instead of LP_DEAD when pruning

● This significantly reduces WAL volume

2/4

6 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Storage

● Faster reads by using streaming APIs

● This happens by allowing pages to be prefetched and performing vectored reads in chunks

up to io_combine_limit

● The operations improved are sequence scans, analyze, and pg_prewarm

● Improved performance of subsystems on top of SLRU

● We achieved this by having configurable SLRU cache sizes

● The cache is divided in "banks" so that eviction buffer search only affects one specific bank

● Changed the locking regime for the SLRU banks, so that each bank uses a separate LWLock

3/4

7 © Fujitsu 2024Fujitsu - Public

Storage

● Allow Table Am's to skip fetching a block from the heap

● The block fetch can be skipped if none of the underlying data is needed and the block is marked all visible in the

visibility map

● Previously such an optimization was only used in BitmapHeapScan

● Optimized array matches in BTree-index

● This significantly improves execution time of queries that use the IN/ANY clause with a B-tree index

● Improved performance of heavily-contended WAL writes, especially at a higher client count

(256 and above)

4/4

8 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Logical Replication

● Sync/Failover slots

● Allow subscribers to follow standbys after primary/publisher goes down

● The failover slots are copied from primary to hot standby at regular intervals by a slotsync worker process

● Users can manually sync the slots by using pg_sync_replication_slots()

● Enabling failover allows us to smoothly transition to the promoted standby, ensuring that we can

subscribe to the new primary without losing any data

● One can enable failover option for a subscription as follows:

1/4

CREATE SUBSCRIPTION sub CONNECTION '$connstr'

 PUBLICATION pub WITH (failover = 'true’)

● Subscribers can continue subscribing to publications now on the new primary

server without losing any data that has been flushed to the new primary server

● For more information, read docs

https://www.postgresql.org/docs/devel/logicaldecoding-explanation.html#LOGICALDECODING-REPLICATION-SLOTS-SYNCHRONIZATION
https://www.postgresql.org/docs/devel/logicaldecoding-explanation.html#LOGICALDECODING-REPLICATION-SLOTS-SYNCHRONIZATION

9 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Logical Replication

● Allow upgrade of logical replication nodes

● Prior to this feature, users manually need to re-create the slots on upgraded publisher and the subscription set

up on new subscribers also need to be re-defined which sometimes may need to copy the data again.

● Migrate logical slots to new node during upgrade of publisher node

● Upgrades preserve the full subscription’s state

● Migration of logical replication clusters is possible only when all the members of

the old logical replication clusters are version 17.0 or later

● While upgrading a subscriber, write operations can be performed in the publisher.

These changes will be replicated to the subscriber once the subscriber upgrade

is completed

2/4

10 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Logical Replication

● pg_createsubscriber to create a logical replica from a physical standby server

● Speed up creation of logical subscriber

● It can be used for upgrading physical replication nodes. Say there is a physical replication setup between node-A

and node-B. Follow below steps to upgrade both nodes in the physical replication setup:

● Stop the standby server (node-B).

● Run pg_createsubscriber on node-B.

● Upgrade node-B and then start node-B.

● Create a physical replica from node-B, say node-C. So both node-B and node-C are on newer server versions.

● Transition all writes from node-A to node-B.

● Decommission node-A.

● By the end, we have a physical replica setup (node-B → node-C) of the newer version

without stopping operations.

3/4

11 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Logical Replication

● Speed up logical decoding in cases where there are many subtransactions

● Previously, we use to check all the (sub)transactions to find the largest transaction to evict

● The new eviction algorithm uses max-heap with transaction size as the key to efficiently find the largest

transaction in O(1)

● A speed up of 30x has been observed in decoding a transaction with 100k subtransactions

● Allow the use of hash indexes for lookups when PK or REPLICA IDENTITY are not available on the subscriber

4/4

12 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

SQL

● Use multiple workers to build BRIN indexes

● Each worker builds BRIN summaries on the subset of table and store those in a sorted form

● The leader read these sorted stream of ranges and adds the resulting ranges into the index

● For large tables this often results in significant speedup when the build is CPU-bound

● Queries that generate initPlans can use parallel workers to execute initPlan

1/9

EXPLAIN (COSTS OFF) SELECT c1 FROM t1 WHERE c1 = (SELECT 1);

 QUERY PLAN

--

 Gather

 Workers Planned: 2

 InitPlan 1

 -> Result

 -> Parallel Seq Scan on t1

 Filter: (c1 = (InitPlan 1).col1)

13 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

SQL

● Eliminated IS NOT NULL query restrictions on NOT NULL columns

2/9

CREATE TABLE pred_tab (a int NOT NULL, b int, c int NOT NULL);

EXPLAIN (COSTS OFF) SELECT * FROM pred_tab t WHERE t.a IS NOT NULL;

 QUERY PLAN

 Seq Scan on pred_tab t

● Eliminated scans on NOT NULL columns if IS NULL is specified

EXPLAIN (COSTS OFF) SELECT * FROM pred_tab t WHERE t.a IS NULL;

 QUERY PLAN

 Result

 One-Time Filter: false

● COPY adds a new option, ON_ERROR ignore, that allows a copy operation to continue
in the event of an error

14 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

SQL

● Allow correlated IN subqueries to be transformed into joins

3/9

EXPLAIN (costs off) SELECT * from tenk1 A WHERE hundred in

 (select hundred from tenk2 B where B.odd = A.odd);

 QUERY PLAN

 --

 Hash Join

 Hash Cond: ((a.odd = b.odd) AND (a.hundred = b.hundred))

 -> Seq Scan on tenk1 a

 -> Hash

 -> HashAggregate

 Group Key: b.odd, b.hundred

 -> Seq Scan on tenk2 b

● Improved CTE plans by considering the statistics and sort order of columns

referenced in earlier row output clauses

● This improves the execution time of such queries significantly

15 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

SQL

● Support identity columns in partitioned tables

● A newly created partition inherits identity property

● An identity column shares the same underlying sequence across all partitions of a partitioned table

● In regular inheritance, identity cols in a child table are independent of those in its parent tables

● A table being attached as a partition inherits the identity property from the partitioned table

● The identity columns of the partition being detached lose their identity property

● Allow exclusion constraints on partitioned tables

● As long as exclusion constraints compare partition key columns for equality, other

columns can use exclusion constraint-specific comparisons

4/9

CREATE TABLE idxpart (a int4range, b int4range, c int4range,
 EXCLUDE USING GIST (b with =, c with &&)) PARTITION BY RANGE (a);

ERROR: unique constraint on partitioned table must include all partitioning columns

DETAIL: EXCLUDE constraint on table "idxpart" lacks column "a" which is part of the partition key.

CREATE TABLE idxpart (a int4range, b int4range, c int4range,
 EXCLUDE USING GIST (a with =, b with =, c with &&)) PARTITION BY RANGE (a, b);

16 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

SQL

● Allow pushdown of EXISTS and IN subqueries to the postgres_fdw foreign server

5/9

EXPLAIN (VERBOSE, COSTS OFF) SELECT t1.c1 FROM ft1 t1 WHERE EXISTS (SELECT 1 FROM ft2 t2 WHERE t1.c1 = t2.c1)
 ORDER BY t1.c1 OFFSET 100 LIMIT 10;

Foreign Scan

 Output: t1.c1

Relations: (public.ft1 t1) SEMI JOIN (public.ft2 t2)

 Remote SQL: SELECT r1."C 1" FROM "S 1"."T 1" r1 WHERE EXISTS (SELECT NULL FROM "S 1"."T 1" r2
 WHERE ((r2."C 1" = r1."C 1"))) ORDER BY r1."C 1" ASC NULLS LAST LIMIT 10::bigint OFFSET 100::bigint

● Allow joins with non-join qualifications to be pushed down to foreign servers

and custom scans

17 © Fujitsu 2024Fujitsu - Public

SQL

● MERGE command now supports RETURNING clause

● New function merge_action() can be used with RETURNING to report the DML that

generated the row

6/9

MERGE INTO products p USING stock s ON p.product_id = s.product_id

 WHEN MATCHED AND s.quantity > 0 THEN UPDATE SET in_stock = true, quantity = s.quantity

 WHEN NOT MATCHED THEN INSERT (product_id, in_stock, quantity) VALUES (s.product_id, true, s.quantity)

 RETURNING merge_action(), p.*;

 merge_action | product_id | in_stock | quantity

--------------+------------+----------+----------

 UPDATE | 1001 | t | 50

 INSERT | 1003 | t | 10

● MERGE command supports WHEN NOT MATCHED BY SOURCE

● This operates on rows that exist in the target relation, but not in the

data source

● MERGE command can modify updatable views

18 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

SQL

● Introduced trigger on login event, allowing to fire some actions right on the user connection

● Useful for logging users login info

● Can disallow logins for certain duration in a day

● For verifying the connection and assigning roles according to current circumstances

● These can be fired on standby servers as well

● Speeded up the serial portion of parallel aggregates and better scales the following in parallel queries:

7/9

sum(numeric) avg(numeric) var_pop(numeric) sum(numeric)

variance(numeric) stddev_pop(numeric) stddev_samp(numeric) stddev(numeric)

array_agg(anyarray) string_agg(text) string_agg(bytea)

● Reduced pallocs and memcpy during deserialization

19 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

SQL

● Introduced 'builtin' collation provider

● Only the C and C.UTF-8 locales are supported for this provider

● The C locale behavior is identical to the C locale in the libc provider

● The C.UTF-8 locale is available only when the database encoding is UTF-8, and the behavior is based on Unicode

● Faster sorting and case conversion (e.g. LOWER()) as compared to libc variant

● This new collation ensures that the return values of your sorts won't change, regardless of what system your

PostgreSQL installation runs on

8/9

20 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Security/SQL

● Avoid the need to grant superuser privileges for following

● pg_maintain role allows executing VACUUM, ANALYZE, CLUSTER, REFRESH MATERIALIZED VIEW,

REINDEX, and LOCK TABLE on all relations

● Alternatively, one can grant MAINTAIN privilege to users on a table

● Make TLS connections without a network round-trip negotiation

● Enabled with the client-side option sslnegotation=direct

● Requires ALPN

● Only works on PostgreSQL 17 and later servers

● PostgreSQL is registered as 'postgresql' in the ALPN directory

● ALTER SYSTEM improvements

● Allow ALTER SYSTEM to set unrecognized custom server variables

● Add system variable allow_alter_system to disallow ALTER SYSTEM

● Useful in environments where configuration is managed by external tools

9/9

https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation

21 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

SQL/JSON

● Introduced function JSON_TABLE() to convert JSON data to a table representation

1/3

CREATE TABLE my_films (js jsonb);

INSERT INTO my_films VALUES (

'{ "favorites" : [

 { "kind" : "horror", "films" : [

 { "title" : "Psycho",

 "director" : "Alfred Hitchcock" }] }

] }');

SELECT jt.* FROM my_films,

 JSON_TABLE (js, '$.favorites[*]'

 COLUMNS (id FOR ORDINALITY,

 kind text PATH '$.kind',

 title text PATH '$.films[*].title’,

 director text PATH '$.films[*].director')) AS jt;

 id | kind | title | director

----+--------+--------+------------------

 1 | horror | Psycho | Alfred Hitchcock

22 © Fujitsu 2024Fujitsu - Public

SQL/JSON

● Introduced SQL/JSON constructor functions JSON(), JSON_SCALAR(), and JSON_SERIALIZE()

2/3

JSON('{"a":123, "b":[true,"foo"], "a":"bar"}')

JSON_SCALAR(123.45)

JSON_SERIALIZE('{ "a" : 1 }' RETURNING bytea)

{"a":123, "b":[true,"foo"], "a":"bar"}

123.45

\x7b20226122203a2031207d20

Converts a given expression specified as text or bytea string (in UTF8 encoding) into a JSON value

JSON_SCALAR ()

JSON_SERIALIZE ()

Converts a given SQL scalar value into a JSON scalar value

JSON ()

Converts an SQL/JSON expression into a character or binary string

23 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

SQL/JSON

● Introduced SQL/JSON query functions JSON_EXISTS(), JSON_QUERY(), and JSON_VALUE()

3/3

SELECT JSON_EXISTS(jsonb '{"key1": [1,2,3]}', '$.key1[2]’);

SELECT JSON_QUERY(jsonb '{"a": "[1, 2]"}', '$.a’);

SELECT JSON_VALUE(jsonb '[1,2]', '$[1]’);

t

[1, 2]

2

Returns true if the SQL/JSON path_expression applied to the JSON value yields any items

JSON_QUERY ()

JSON_VALUE ()

Returns the result (JSON, array, or string) of applying the SQL/JSON path_expression to the JSON value

JSON_EXISTS ()

Returns the result (SQL/JSON scalar) of applying the SQL/JSON path_expression to the JSON value

24 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Monitoring

● New view pg_wait_events

● It primarily gives the information on wait event details/description

1/2

-[RECORD 1]---+---

pid | 21090

state|

wait_event_type | Activity

wait_event | CheckpointerMain

description | Waiting in main loop of checkpointer process

● All checkpointer-related stats could be found in pg_stat_checkpointer

● Previously, some of this info was stored in pg_stat_bgwriter, which is trimmed now

● For more information:
www.postgresql.org/docs/17/monitoring-stats.html#MONITORING-PG-STAT-CHECKPOINTER-VIEW

http://www.postgresql.org/docs/17/monitoring-stats.html#MONITORING-PG-STAT-CHECKPOINTER-VIEW
https://www.postgresql.org/docs/devel/monitoring-stats.html#MONITORING-PG-STAT-CHECKPOINTER-VIEW

25 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Monitoring

● Index Vacuum progress in pg_stat_progress_vacuum

● indexes_total: total number of indexes that will be vacuumed or cleaned up

● indexes_processed: number of indexes for which vacuum has been performed

2/2

26 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Backward compatibility

● Removed the parameter old_snapshot_threshold

● The parameter defines the time threshold for a snapshot during which old row versions will not be deleted

● When querying the vacuumed rows, PostgreSQL returns “Snapshot too old” error

● As it turns out, there are issues with the parameter’s implementation, including some performance-related

ones

● Change functions to use a safe search_path during maintenance operations

● While executing maintenance operations (ANALYZE, CLUSTER, REFRESH MATERIALIZED VIEW, REINDEX, or

VACUUM), set search_path to 'pg_catalog, pg_temp' to prevent inconsistent behavior

● Remove wal_sync_method value fsync_writethrough on Windows

● This value was the same as fsync on Windows.

● Remove buffers_backend and buffers_backend_fsync from pg_stat_bgwriter

● These fields are considered redundant to similar columns in pg_stat_io.

1/1

https://www.postgresql.org/docs/17/runtime-config-client.html#GUC-SEARCH-PATH

27 © Fujitsu 2024Fujitsu - Public

Changes in PostgreSQL 17

● The full list of new/enhanced features and other changes can be found here

https://www.postgresql.org/docs/devel/release-17.html
https://www.postgresql.org/docs/devel/release-17.html

Disclaimer: This section is based on what I could see
being proposed in community at this stage

● Key features and performance improvements

in PostgreSQL 17

PostgreSQL 18 and beyond

Agenda

29 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

PostgreSQL 18 and beyond

● Asynchronous I/O

● Index prefetch: This will improve index access performance

● Will allow prefetching data and will improve system performance

● Vectored I/O for bulk writes

● Import/Export Statistics

● This will help to run queries after upgrade without first running Analyze

● Skip Scans in btree

● Allow WITHOUT OVERLAPS clause to PRIMARY KEY and UNIQUE constraints

● These will be backed by GiST indexes instead of B-tree indexes

● Muti-threaded

● A very large project but making slow infrastructural improvements

1/4

30 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

PostgreSQL 18 and beyond

● Various improvements in Logical Replication

● Replication of sequences

● Conflict detection and resolution

● DDL Replication

● Node management APIs

● Slot invalidation for unused slots

● Executor improvements

● Special-case executor expression steps for common combinations

(JIT generated code simpler)

● JIT compilation per plan node

● SQL standard Row Pattern Recognition (RPR)

2/4

31 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

PostgreSQL 18 and beyond

● SQL property graph queries, according to SQL/PGQ standard

● Improvements in partitioning technology, especially in pruning when large number of partitions are present

● Optimizer improvements to make various kind of queries work better

● Read my writes on standby by using pg_wal_replay_wait() stored procedure

● Enhance incremental backups to work for tar format

● Parallelism

● Parallelize vacuum on tables

● Parallel Create Index for GIN Indexes

● Parallelize correlated subqueries

● TID range scan

3/4

32 © Fujitsu 2024Fujitsu - Public

PostgreSQL 18 and beyond

● Transparent column encryption

● Automatic, transparent encryption and decryption of particular columns in the client

● Introduce compression at wire_protocol_level

● 64bit XIDs

● Can avoid freezing and reduce the need of autovacuum

● WAL Size reduction

● Smaller headers in WAL

● TOAST improvements

● Custom formats

● Compression dictionaries

4/4

33 © Fujitsu 2024Fujitsu - Public

PostgreSQL 18 and beyond

● Stats

● Pluggable APIs for Cumulative Statistics. This allows out-of-core extensions to plug their own custom kinds of

cumulative statistics.

● Additional vacuum stats to observe index bloats or other similar unexpected cases

● Per backend I/O stats

● More stats

● Enhance Table AM APIs to suite for different storage engines

● CI and build system improvements

4/4

Thank you

Published: 1/10/2024 WW EN

© Fujitsu Limited 2024. Fujitsu, the Fujitsu logo and Fujitsu brand names are trademarks or registered trademarks of Fujitsu Limited in Japan and other countries. Other company, product and service names may be
trademarks or registered trademarks of their respective owners. All rights reserved. No part of this document may be reproduced, stored or transmitted in any form without prior written permission of Fujitsu Limited. Fujitsu
Limited endeavors to ensure the information in this document is correct and fairly stated but does not accept liability for any errors or omissions.

Latest developments in PostgreSQL

Amit Kapila
PostgreSQL Committer and Major Contributor

	Slide 1: Latest developments in PostgreSQL
	Slide 2: Agenda
	Slide 3: Agenda
	Slide 4: Storage
	Slide 5: Storage
	Slide 6: Storage
	Slide 7: Storage
	Slide 8: Logical Replication
	Slide 9: Logical Replication
	Slide 10: Logical Replication
	Slide 11: Logical Replication
	Slide 12: SQL
	Slide 13: SQL
	Slide 14: SQL
	Slide 15: SQL
	Slide 16: SQL
	Slide 17: SQL
	Slide 18: SQL
	Slide 19: SQL
	Slide 20: Security/SQL
	Slide 21: SQL/JSON
	Slide 22: SQL/JSON
	Slide 23: SQL/JSON
	Slide 24: Monitoring
	Slide 25: Monitoring
	Slide 26: Backward compatibility
	Slide 27: Changes in PostgreSQL 17
	Slide 28: Agenda
	Slide 29: PostgreSQL 18 and beyond
	Slide 30: PostgreSQL 18 and beyond
	Slide 31: PostgreSQL 18 and beyond
	Slide 32: PostgreSQL 18 and beyond
	Slide 33: PostgreSQL 18 and beyond
	Slide 34

