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Storage

● Incremental Backups

● Useful for taking backups of large data

● pg_basebackup can be used to take incremental backups by specifying the –incremental option

● Specify the backup manifest to an earlier backup from the same server

● In the resulting backup only the changed blocks are copied

● To figure out which blocks needs to be copied, the server uses WAL summaries 

stored in the data directory

● A GUC summarize_wal needs to be enabled to collect these WAL 

summaries by a background process

● The tool pg_combinebackup is used to reconstruct a full backup from an 

incremental backup and earlier backups upon which it depends
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Storage

● Improved the mechanism to remove dead tuples during vacuum

● Replaced the array used to store dead tuples with efficient TIDStore based on adaptive radix tree

● Since the backing radix tree makes small allocations as needed, the 1GB limit is now gone.

● Total memory used is now often smaller by an order of magnitude or more

● This makes multiple rounds of heap scanning and index cleanup an extremely rare event

● TID lookup during index cleanup is also several times faster

● Reduced the WAL volume for Vacuum by combining freezing and pruning steps such that we now 

emit a single WAL record containing changes from both steps

● As a consequence of this, WAL sync and write time is reduced

● Optimize vacuuming of relations with no indexes

● Items can be marked LP_UNUSED instead of LP_DEAD when pruning

● This significantly reduces WAL volume
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Storage

● Faster reads by using streaming APIs

● This happens by allowing pages to be prefetched and performing vectored reads in chunks 

up to io_combine_limit

● The operations improved are sequence scans, analyze, and pg_prewarm

● Improved performance of subsystems on top of SLRU

● We achieved this by having configurable SLRU cache sizes

● The cache is divided in "banks" so that eviction buffer search only affects one specific bank

● Changed the locking regime for the SLRU banks, so that each bank uses a separate LWLock

3/4



7 © Fujitsu 2024Fujitsu - Public

Storage

● Allow Table Am's to skip fetching a block from the heap

● The block fetch can be skipped if none of the underlying data is needed and the block is marked all visible in the 

visibility map

● Previously such an optimization was only used in BitmapHeapScan

● Optimized array matches in BTree-index

● This significantly improves execution time of queries that use the IN/ANY clause with a B-tree index

● Improved performance of heavily-contended WAL writes, especially at a higher client count 

(256 and above)
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Logical Replication

● Sync/Failover slots

● Allow subscribers to follow standbys after primary/publisher goes down

● The failover slots are copied from primary to hot standby at regular intervals by a slotsync worker process

● Users can manually sync the slots by using pg_sync_replication_slots()

● Enabling failover allows us to smoothly transition to the promoted standby, ensuring that we can

subscribe to the new primary without losing any data

● One can enable failover option for a subscription as follows:

1/4

CREATE SUBSCRIPTION sub CONNECTION '$connstr'

       PUBLICATION  pub WITH (failover = 'true’)

● Subscribers can continue subscribing to publications now on the new primary 

server without losing any data that has been flushed to the new primary server

● For more information, read docs

https://www.postgresql.org/docs/devel/logicaldecoding-explanation.html#LOGICALDECODING-REPLICATION-SLOTS-SYNCHRONIZATION
https://www.postgresql.org/docs/devel/logicaldecoding-explanation.html#LOGICALDECODING-REPLICATION-SLOTS-SYNCHRONIZATION


9 © Fujitsu 2024Fujitsu - Public © Fujitsu 2024

Logical Replication

● Allow upgrade of logical replication nodes

● Prior to this feature, users manually need to re-create the slots on upgraded publisher and the subscription set 

up on new subscribers also need to be re-defined which sometimes may need to copy the data again. 

● Migrate logical slots to new node during upgrade of publisher node

● Upgrades preserve the full subscription’s state

● Migration of logical replication clusters is possible only when all the members of 

the old logical replication clusters are version 17.0 or later

● While upgrading a subscriber, write operations can be performed in the publisher. 

These changes will be replicated to the subscriber once the subscriber upgrade 

is completed
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Logical Replication

● pg_createsubscriber to create a logical replica from a physical standby server

● Speed up creation of logical subscriber

● It can be used for upgrading physical replication nodes. Say there is a physical replication setup between node-A 

and node-B. Follow below steps to upgrade both nodes in the physical replication setup:

● Stop the standby server (node-B).

● Run pg_createsubscriber on node-B.

● Upgrade node-B and then start node-B.

● Create a physical replica from node-B, say node-C. So both node-B and node-C are on newer server versions.

● Transition all writes from node-A to node-B.

● Decommission node-A.

● By the end, we have a physical replica setup (node-B → node-C) of the newer version               

without stopping operations.
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Logical Replication

● Speed up logical decoding in cases where there are many subtransactions

● Previously, we use to check all the (sub)transactions to find the largest transaction to evict

● The new eviction algorithm uses max-heap with transaction size as the key to efficiently find the largest 

transaction in O(1)

● A speed up of 30x has been observed in decoding a transaction with 100k subtransactions

● Allow the use of hash indexes for lookups when PK or REPLICA IDENTITY are not available on the subscriber

4/4
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SQL

● Use multiple workers to build BRIN indexes

● Each worker builds BRIN summaries on the subset of table and store those in a sorted form

● The leader read these sorted stream of ranges and adds the resulting ranges into the index

● For large tables this often results in significant speedup when the build is CPU-bound

● Queries that generate initPlans can use parallel workers to execute initPlan

1/9

EXPLAIN (COSTS OFF) SELECT c1 FROM t1 WHERE c1 = (SELECT 1);

                QUERY PLAN

------------------------------------------

   Gather

     Workers Planned: 2

     InitPlan 1

       ->  Result

     ->  Parallel Seq Scan on t1

           Filter: (c1 = (InitPlan 1).col1)
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SQL

● Eliminated IS NOT NULL query restrictions on NOT NULL columns
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CREATE TABLE pred_tab (a int NOT NULL, b int, c int NOT NULL);

EXPLAIN (COSTS OFF) SELECT * FROM pred_tab t WHERE t.a IS NOT NULL;

       QUERY PLAN       

   ------------------------

     Seq Scan on pred_tab t

● Eliminated scans on NOT NULL columns if IS NULL is specified

 

EXPLAIN (COSTS OFF) SELECT * FROM pred_tab t WHERE t.a IS NULL;

        QUERY PLAN        

   --------------------------

    Result

        One-Time Filter: false

● COPY adds a new option, ON_ERROR ignore, that allows a copy operation to continue                                            
in the event of an error
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SQL

● Allow correlated IN subqueries to be transformed into joins

3/9

EXPLAIN (costs off) SELECT * from tenk1 A WHERE hundred in 

 (select hundred from tenk2 B where B.odd = A.odd);

                           QUERY PLAN

   ------------------------------------------------------------

   Hash Join

     Hash Cond: ((a.odd = b.odd) AND (a.hundred = b.hundred))

     ->  Seq Scan on tenk1 a

     ->  Hash

           ->  HashAggregate

                 Group Key: b.odd, b.hundred

                 ->  Seq Scan on tenk2 b

● Improved CTE plans by considering the statistics and sort order of columns 

referenced in earlier row output clauses

● This improves the execution time of such queries significantly
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SQL

● Support identity columns in partitioned tables

● A newly created partition inherits identity property

● An identity column shares the same underlying sequence across all partitions of a partitioned table 

● In regular inheritance, identity cols in a child table are independent of those in its parent tables

● A table being attached as a partition inherits the identity property from the partitioned table

● The identity columns of the partition being detached lose their identity property

● Allow exclusion constraints on partitioned tables

● As long as exclusion constraints compare partition key columns for equality, other 

columns can use exclusion constraint-specific comparisons

4/9

CREATE TABLE idxpart (a int4range, b int4range, c int4range, 
             EXCLUDE USING GIST (b with =, c with &&)) PARTITION BY RANGE (a);

ERROR:  unique constraint on partitioned table must include all partitioning columns

DETAIL:  EXCLUDE constraint on table "idxpart" lacks column "a" which is part of the partition key.

CREATE TABLE idxpart (a int4range, b int4range, c int4range, 
             EXCLUDE USING GIST (a with =, b with =, c with &&)) PARTITION BY RANGE (a, b);
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SQL

● Allow pushdown of EXISTS and IN subqueries to the postgres_fdw foreign server

5/9

EXPLAIN (VERBOSE, COSTS OFF) SELECT t1.c1 FROM ft1 t1 WHERE EXISTS (SELECT 1 FROM ft2 t2 WHERE t1.c1 = t2.c1) 
                             ORDER BY t1.c1 OFFSET 100 LIMIT 10;

Foreign Scan

   Output: t1.c1

Relations: (public.ft1 t1) SEMI JOIN (public.ft2 t2)

   Remote SQL: SELECT r1."C 1" FROM "S 1"."T 1" r1 WHERE EXISTS (SELECT NULL FROM "S 1"."T 1" r2 
               WHERE ((r2."C 1" = r1."C 1"))) ORDER BY r1."C 1" ASC NULLS LAST LIMIT 10::bigint OFFSET 100::bigint

● Allow joins with non-join qualifications to be pushed down to foreign servers 

and custom scans
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SQL

● MERGE command now supports RETURNING clause

● New function merge_action() can be used with RETURNING to report the DML that 

generated the row

6/9

MERGE INTO products p  USING stock s ON p.product_id = s.product_id

      WHEN MATCHED AND s.quantity > 0 THEN UPDATE SET in_stock = true, quantity = s.quantity

      WHEN NOT MATCHED THEN  INSERT (product_id, in_stock, quantity) VALUES (s.product_id, true, s.quantity)

      RETURNING merge_action(), p.*;

 merge_action | product_id | in_stock | quantity

--------------+------------+----------+----------

 UPDATE       |       1001 | t        |       50

 INSERT       |       1003 | t        |       10

● MERGE command supports WHEN NOT MATCHED BY SOURCE

● This operates on rows that exist in the target relation, but not in the

data source

● MERGE command can modify updatable views
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SQL

● Introduced trigger on login event, allowing to fire some actions right on the user connection

● Useful for logging users login info

● Can disallow logins for certain duration in a day

● For verifying the connection and assigning roles according to current circumstances

● These can be fired on standby servers  as well

● Speeded up the serial portion of parallel aggregates and better scales the following in parallel queries:

7/9

sum(numeric) avg(numeric) var_pop(numeric) sum(numeric)

variance(numeric) stddev_pop(numeric) stddev_samp(numeric) stddev(numeric)

array_agg(anyarray) string_agg(text) string_agg(bytea)

● Reduced pallocs and memcpy during deserialization
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SQL

● Introduced 'builtin' collation provider

● Only the C and C.UTF-8 locales are supported for this provider

● The C locale behavior is identical to the C locale in the libc provider

● The C.UTF-8 locale is available only when the database encoding is UTF-8, and the behavior is based on Unicode

● Faster sorting and case conversion (e.g. LOWER()) as compared to libc variant

● This new collation ensures that the return values of your sorts won't change, regardless of what system your 

PostgreSQL installation runs on
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Security/SQL

● Avoid the need to grant superuser privileges for following

● pg_maintain role allows executing VACUUM, ANALYZE, CLUSTER, REFRESH MATERIALIZED VIEW, 

REINDEX, and LOCK TABLE on all relations

● Alternatively, one can grant MAINTAIN privilege to users on a table

● Make TLS connections without a network round-trip negotiation

● Enabled with the client-side option sslnegotation=direct

● Requires ALPN

● Only works on PostgreSQL 17 and later servers

● PostgreSQL is registered as 'postgresql' in the ALPN directory

● ALTER SYSTEM improvements

● Allow ALTER SYSTEM to set unrecognized custom server variables

● Add system variable allow_alter_system to disallow ALTER SYSTEM

● Useful in environments where configuration is managed by external tools

9/9

https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
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SQL/JSON

● Introduced function JSON_TABLE() to convert JSON data to a table representation

1/3

CREATE TABLE my_films ( js jsonb );

INSERT INTO my_films VALUES (

'{ "favorites" : [

   { "kind" : "horror", "films" : [

     { "title" : "Psycho",

       "director" : "Alfred Hitchcock" } ] }

 ] }');

SELECT jt.* FROM my_films, 

       JSON_TABLE (js, '$.favorites[*]' 

         COLUMNS (id FOR ORDINALITY, 

                  kind text PATH '$.kind', 

                  title text PATH '$.films[*].title’,

                  director text PATH '$.films[*].director')) AS jt;

 id |  kind  | title  |     director

----+--------+--------+------------------

  1 | horror | Psycho | Alfred Hitchcock
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SQL/JSON

● Introduced SQL/JSON constructor functions JSON(), JSON_SCALAR(), and JSON_SERIALIZE()

2/3

JSON('{"a":123, "b":[true,"foo"], "a":"bar"}')

JSON_SCALAR(123.45)

JSON_SERIALIZE('{ "a" : 1 }' RETURNING bytea)

{"a":123, "b":[true,"foo"], "a":"bar"}

123.45

\x7b20226122203a2031207d20

Converts a given expression specified as text or bytea string (in UTF8 encoding) into a JSON value

JSON_SCALAR ()

JSON_SERIALIZE ()

Converts a given SQL scalar value into a JSON scalar value

JSON ()

Converts an SQL/JSON expression into a character or binary string
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SQL/JSON

● Introduced SQL/JSON query functions JSON_EXISTS(), JSON_QUERY(), and JSON_VALUE()

3/3

SELECT JSON_EXISTS(jsonb '{"key1": [1,2,3]}', '$.key1[2]’);

SELECT JSON_QUERY(jsonb '{"a": "[1, 2]"}', '$.a’);

SELECT JSON_VALUE(jsonb '[1,2]', '$[1]’);

t

[1, 2]

2

Returns true if the SQL/JSON path_expression applied to the JSON value yields any items

JSON_QUERY ()

JSON_VALUE ()

Returns the result (JSON, array, or string) of applying the SQL/JSON path_expression to the JSON value

JSON_EXISTS ()

Returns the result (SQL/JSON scalar) of applying the SQL/JSON path_expression to the JSON value
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Monitoring

● New view pg_wait_events

● It primarily gives the information on wait event details/description

1/2

-[ RECORD 1 ]---+--------------------------------------------- 

pid | 21090

state|

wait_event_type | Activity

wait_event | CheckpointerMain

description | Waiting in main loop of checkpointer process

● All checkpointer-related stats could be found in pg_stat_checkpointer

● Previously, some of this info was stored in pg_stat_bgwriter, which is trimmed now

● For more information:
www.postgresql.org/docs/17/monitoring-stats.html#MONITORING-PG-STAT-CHECKPOINTER-VIEW

http://www.postgresql.org/docs/17/monitoring-stats.html#MONITORING-PG-STAT-CHECKPOINTER-VIEW
https://www.postgresql.org/docs/devel/monitoring-stats.html#MONITORING-PG-STAT-CHECKPOINTER-VIEW
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Monitoring

● Index Vacuum progress in pg_stat_progress_vacuum

● indexes_total: total number of indexes that will be vacuumed or cleaned up

● indexes_processed: number of indexes for which vacuum has been performed

2/2
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Backward compatibility

● Removed the parameter old_snapshot_threshold

● The parameter defines the time threshold for a snapshot during which old row versions will not be deleted

● When querying the vacuumed rows, PostgreSQL returns “Snapshot too old” error

● As it turns out, there are issues with the parameter’s implementation, including some performance-related 

ones

● Change functions to use a safe search_path during maintenance operations

● While executing maintenance operations (ANALYZE, CLUSTER, REFRESH MATERIALIZED VIEW, REINDEX, or 

VACUUM), set search_path to 'pg_catalog, pg_temp' to prevent inconsistent behavior

● Remove wal_sync_method value fsync_writethrough on Windows

● This value was the same as fsync on Windows.

● Remove buffers_backend and buffers_backend_fsync from pg_stat_bgwriter

● These fields are considered redundant to similar columns in pg_stat_io.

1/1

https://www.postgresql.org/docs/17/runtime-config-client.html#GUC-SEARCH-PATH
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Changes in PostgreSQL 17

● The full list of new/enhanced features and other changes can be found here

https://www.postgresql.org/docs/devel/release-17.html
https://www.postgresql.org/docs/devel/release-17.html
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PostgreSQL 18 and beyond

● Asynchronous I/O

● Index prefetch: This will improve index access performance

● Will allow prefetching data and will improve system performance

● Vectored I/O for bulk writes

● Import/Export Statistics

● This will help to run queries after upgrade without first running Analyze

● Skip Scans in btree

● Allow WITHOUT OVERLAPS clause to PRIMARY KEY and UNIQUE constraints

● These will be backed by GiST indexes instead of B-tree indexes

● Muti-threaded

● A very large project but making slow infrastructural improvements

1/4
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PostgreSQL 18 and beyond

● Various improvements in Logical Replication

● Replication of sequences

● Conflict detection and resolution

● DDL Replication

● Node management APIs

● Slot invalidation for unused slots

● Executor improvements

● Special-case executor expression steps for common combinations 

(JIT generated code simpler)

● JIT compilation per plan node

● SQL standard Row Pattern Recognition (RPR)

2/4
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PostgreSQL 18 and beyond

● SQL property graph queries, according to SQL/PGQ standard

● Improvements in partitioning technology, especially in pruning when large number of partitions are present

● Optimizer improvements to make various kind of queries work better

● Read my writes on standby by using pg_wal_replay_wait() stored procedure

● Enhance incremental backups to work for tar format

● Parallelism

● Parallelize vacuum on tables

● Parallel Create Index for GIN Indexes

● Parallelize correlated subqueries

● TID range scan

3/4
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PostgreSQL 18 and beyond

● Transparent column encryption

● Automatic, transparent encryption and decryption of particular columns in the client

● Introduce compression at wire_protocol_level

● 64bit XIDs

● Can avoid freezing and reduce the need of autovacuum

● WAL Size reduction

● Smaller headers in WAL

● TOAST improvements

● Custom formats

● Compression dictionaries

4/4
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PostgreSQL 18 and beyond

● Stats

● Pluggable APIs for Cumulative Statistics. This allows out-of-core extensions to plug their own custom kinds of 

cumulative statistics.

● Additional vacuum stats to observe index bloats or other similar unexpected cases

● Per backend I/O stats

● More stats

● Enhance Table AM APIs to suite for different storage engines

● CI and build system improvements

4/4
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